AI应用开发思路及最佳实践

过去几年,人工智能应用呈现爆炸式增长。一个明显例子是ChatGPT——这款由OpenAI推出的对话模型在发布仅两个月后月活用户突破1亿,成为史上用户增长最快的消费级应用 (史上增速最快消费级应用,ChatGPT月活用户突破1亿澎湃号·湃客澎湃新闻-The Paper)。AI的迅猛发展让各行各业都在思考如何将其融入业务。然而,热潮之下也有浮躁与挑战。调查显示,许多企业在AI上的投入尚未获得理想回报:2024年只有47%的受访IT领导者认为他们的AI项目实现了盈利 (ROI remains elusive for enterprise AI plans despite progress | CIO Dive)。一些项目甚至因为效果不佳而中途夭折,比如IBM耗资数十亿美元打造的Watson肿瘤诊疗系统曾被曝出推荐“不安全或错误”的治疗方案,未能达到预期 (IBM’s Watson recommended ‘unsafe and incorrect’ treatments for cancer patients, investigation reveals) (IBM’s Watson recommended ‘unsafe and incorrect’ treatments for cancer patients, investigation reveals)。显然,AI应用既有潜在高回报,也充满风险和不确定性。如何系统化地开发AI应用,在避开陷阱的同时有效落地价值? 这正是我们今天讨论的核心。接下来,我将结合方法论框架和实际案例,为大家介绍AI应用开发的思路及最佳实践,以帮助各位在日常工作中更好地规划和实施AI项目。